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Angiogenesis, the process of new blood vessel formation from preexisting ones, plays a pivotal role in tumor growth. Vascular
endothelial growth factor receptor-2 (VEGFR2) is the main proangiogenic tyrosine kinase receptor expressed by endothelial
cells (ECs). VEGFR2 binds different ligands triggering vascular permeability and growth. VEGFR2-ligands accumulate in the
extracellular matrix (ECM) and induce the polarization of ECs as well as the relocation of VEGFR2 in the basal cell membrane
in contact with ECM. We propose here a multiphysical model to describe the dynamic of VEGFR2 on the plasma membrane. The
governing equations for the relocation of VEGFR2 on themembrane stem from a rigorous thermodynamic setting, whereby strong
simplifying assumptions are here taken and discussed. The multiphysics model is validated against experimental investigations.

1. Introduction

Vascular Endothelial Growth Factor Receptor-2 (VEGFR2)
is a proangiogenic receptor expressed on endothelial cells
(ECs) and is the main mediator of the angiogenic response.
The interaction between VEGFR2 and extracellular ligands,
produced by tumor cells, is essential to cancer growth. Specif-
ically, ligand stimulation causes the relocation of VEGFR2
in the basal aspect in cells plated on ligand-enriched extra-
cellular matrix both in vitro and in vivo, and ultimately
receptors-ligands interaction activates the ECs division and
proliferation towards tumor cells. Upon release, growth
factors associate with the extracellular matrix and act as ECs
guidance during neo-vessel formation.

Receptor-ligand interactions have been extensively stud-
ied and mathematical models have been proposed. Some
concerned the estimation of the reaction rates for membrane-
bound reactants [1–3]; a few models with different level of
complexity account for adhesion receptor-ligand (as inte-
grins and fibronectin) kinetics, receptor-ligand densities, cell
rheology, and cytoskeletal force generation [4]. Only a few
investigations concerned specifically VEGFR2 [5, 6].

Codesigned experiments and simulations for VEGFR2
have been recently developed, with biological findings and
the predictive ability of the model extensively discussed in
[7]. Here, we profoundly describe the modeling of VEGFR2
recruitment in angiogenesis, detailing the thermodynamic
description, the weak formulation, and the algorithms for the
numerical solution.

The mathematical model here proposed accounts for
diffusion of VEGFR2 along the cellular membrane and for
ligands-receptors chemical reactions. It is framed in the
mechanics and thermodynamics of continua, following a
general description proposed in [8], and takes advantage
of successful descriptions of physically similar systems [9,
10]. The effect of the cell deformation on the diffusion-
reaction process on themembrane is here strongly simplified,
surrogating the effects of the change in geometry on the
chemodiffusive equations with a fictitious source term of
ligands, detailed in Section 2.2.

The model stems from continuity equations (for mass,
energy, and entropy; see Section 2.1), standard chemical
kinetics, summarized in Section 2.6, thermodynamic restric-
tions, and constitutive specifications, detailed in Section 2.4.
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This sequence provides the governing equations in a strong
form in Section 2.7, which is converted in a weak form in Sec-
tion 2.8 prior to the numerical approximation via the Finite
Element Method (FEM). The partial differential equations
of the model have been implemented in a computer code,
with the ultimate goal to predict conditions for angiogenesis.
The FEM code, implemented in the deal.ii open source
finite element library, has been validated against codesigned
experiments partially discussed in the companion paper
[7].

2. Modeling VEGFR2 Diffusion Driven by
Its Specific Ligand

2.1. Mass Balance Equations. A general formulation for
the chemo-transport-mechanics problem is here tailored to
model the relocation of VEGFR-2 driven by its specific ligand
on the lipid bilayer membrane (henceforth denoted with Ω).
The interaction between receptors (R) and ligands (L) is
described as a chemical reaction, which produces a receptor-
ligand complex (C)

R + L
𝑘𝑓󳨀󳨀→←󳨀󳨀
𝑘𝑏

C, (1)

where 𝑘𝑓 and 𝑘𝑏 are the kinetic constants of the forward
and backward reaction, respectively. The reaction rate 𝑤(1),
measured in [𝑚𝑜𝑙/𝑚3𝑠], quantifies the net formation of (C)
as the difference between the forward and backward reaction
rates.

Complex internalization and its return back to the surface
are not considered in this model.Therefore, the mass balance
equations are defined on the membrane Ω as follows:

𝜕𝑐𝑅𝜕𝑡 + divΩ [󳨀→ℎ 𝑅] + 𝑤(1) = 𝑠𝑅, (2a)

𝜕𝑐𝐿𝜕𝑡 + divΩ [󳨀→ℎ 𝐿] + 𝑤(1) = 𝑠𝐿, (2b)

𝜕𝑐𝐶𝜕𝑡 + divΩ [󳨀→ℎ𝐶] − 𝑤(1) = 𝑠𝐶. (2c)

Symbols in (2a)–(2c) have the following meaning (concen-
trations 𝑐𝛽 are defined in space and time, i.e., 𝑐𝛽 = 𝑐𝛽(󳨀→𝑥, 𝑡).
The same holds for

󳨀→ℎ 𝛽, 𝑤(1), and 𝑠𝛽. Functional dependence
is specifiedwhennecessary only, to favor readability): 𝑐𝛽 (with𝛽 = 𝑅, 𝐿, 𝐶 ) is the molarity (i.e., the number of moles
per unit area) of a generic species 𝛽; 󳨀→ℎ 𝛽 is the mass flux in
terms of molecules, i.e., the number of molecules of species𝛽 measured per unit length per unit time, and is a tangent
vector field on the membrane; 𝑠𝛽 is the rate in number of
molecules per unit volume per unit time at which species 𝛽 is
generated by sources, and 𝑡 is the time.

Ligands, whose degradation is negligible, are immobi-
lized in the substrate as they are in vitro. The complex are
assumed to be immobile as well, i.e.,

󳨀→ℎ 𝐿 = 󳨀→ℎ𝐶 = 󳨀→0 . (3)

Since receptors are free to move along the membrane, reac-
tion (1) portrays a conversion of mobile to trapped receptors
and vice versa.

Equations (2a)–(2c) are defined on the cell membrane.
Accordingly, the divergence operator has to be defined on
the same surface. Denoting with 󳨀→𝑛 the cell membrane unit
normal,

divΩ [󳨀→ℎ 𝑅] = 󳨀→𝑛 ⋅ curl [󳨀→𝑛 × 󳨀→ℎ 𝑅]
= div [󳨀→ℎ 𝑅] − (∇ [󳨀→ℎ 𝑅] 󳨀→𝑛) ⋅ 󳨀→𝑛 .

(4)

Mass balance equations (2a)–(2c) shall be accompanied
by the balance of force in order to model the mechanical
deformation of the cell, whose boundary, the membrane, is
the geometrical support of (2a)–(2c). Modeling the evolution
of the Laplace-Beltrami operator that presides formulation
concurrently with the large deformation of the cell is a
phenomenally ambitious task, which is in progress motivated
by the promising outcomes here shown. In the present
work, we surrogate the mechanics with some simplifying
assumptions.

2.2. Surrogated Mechanics. During the codesigned experi-
mental test, the cell progressively spreads out on the substrate.
Since the latter is enriched with immobilized ligands, the
cell surface in contact with the support increases with time
and results in a supply of available ligands for the chemical
reaction (1) to occur. Mechanical models for cell spreading
involve very sophisticated descriptions of active and passive
behavior of cells [11–13], leading to simulations of impressive
computational burden. In the present, seminal works do not
account explicitly for the mechanical evolution of the cell,
which keeps its original shape. Rather, we surrogate the effects
of its change in geometry on the chemodiffusive equations
(2a)–(2c) by introducing a source term of ligands 𝑠𝐿 whose
expression is calibrated from experimental evidence [14].The
following expression for 𝑠𝐿 in (2b) is taken [7]:

𝑠𝐿 (𝑥, 𝑡) = 𝑐𝐿𝑡 H [𝑡 − 𝑥
V
]H [𝑡 − 𝑡 + 𝑥

V
] (5)

The path of reasoning beyond (5) is equivalent to consider the
cell as rigid and the substrate much more deformable, so that
the latter envelopes the spherical cell, as depicted in Figure 1.

In (5), H[−] is the Heaviside step function, 𝑐𝐿 = 72
ligands/𝜇m2 is the concentration of substrate-immobilized
ligand available for reaction (1), 𝑡𝑓 is the time required for
the complete mechanical deformation of the cell, V = 𝜋ℓ/2𝑡𝑓
is the velocity of mechanical deformation (assumed to be
constant until 𝑡𝑓), ℓ is the cell radius, 𝑡 ≪ 𝑡𝑓 is a parameter
that identifies a finite time required for binding, 𝑥 is the
curvilinear abscissa of our simplified geometry, and 𝑡 is the
generic time. In view of (5), the supply of ligands at point 𝑥
on themembrane remains zero until 𝑡 < 𝑥/V; then, in the time
span between 𝑡 = 𝑥/V and 𝑡 = 𝑥/V+𝑡, it increases rapidly from
zero to 𝑐𝐿. We assume

𝑠𝑅 = 𝑠𝐶 = 0, (6)
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Figure 1: Surrogated mechanics: the cell-substrate contact dynamics is simulated by assuming that it is the substrate that gets deformed by
the cell membrane, thus inducing a supply of ligands captured by function 𝑠𝐿 in (5).

since complex is provided by 𝑤(1) only, and receptors are not
generated.

In view of the above, mass balance equations (2a)–(2c)
finally become

𝜕𝑐𝑅𝜕𝑡 + divΩ [󳨀→ℎ 𝑅] + 𝑤(1) = 0 (7a)

𝜕𝑐𝐿𝜕𝑡 + 𝑤(1) − 𝑠𝐿 (𝑥, 𝑡) = 0 (7b)

𝜕𝑐𝐶𝜕𝑡 − 𝑤(1) = 0 (7c)

2.3. Weak Form and Boundary Conditions. The weak for-
mulation of balance equations (7a)–(7c) comes out after
multiplication by a suitable set of time independent test
functions, here denoted with a superposed caret, and from an
integration upon the membrane, exploiting Green’s formula
to reduce the order of differentiation. Consider the mass
balance (7a) as a prototype:

∫
Ω
𝑐𝑅 {𝜕𝑐𝑅𝜕𝑡 + divΩ [󳨀→ℎ 𝑅] + 𝑤(1)} d𝐴

= ∫
Ω
𝑐𝑅𝜕𝑐𝑅𝜕𝑡 d𝐴 + ∫

Ω
divΩ [𝑐𝑅󳨀→ℎ 𝑅] − ∇Ω [𝑐𝑅] ⋅ 󳨀→ℎ 𝑅d𝐴

+ ∫
Ω
𝑐𝑅𝑤(1)d𝐴

= ∫
Ω
𝑐𝑅𝜕𝑐𝑅𝜕𝑡 d𝐴 − ∫

Ω
∇Ω [𝑐𝑅] ⋅ 󳨀→ℎ 𝑅d𝐴 + ∫

Ω
𝑐𝑅𝑤(1)d𝐴

= 0.

(8)

In the former identity, a surface gradient operator arises in
view of the integration by parts of the divergence term. Such
a surface gradient, on the spherical smooth surface of the
membrane, is defined as

∇Ω [𝑐𝑅] = ∇ [𝑐𝑅] − (󳨀→𝑛 ⋅ ∇ [𝑐𝑅]) 󳨀→𝑛 (9)

with 󳨀→𝑛 the cell membrane unit normal. Within weak for-
mulations a contribution is usually defined on the boundary
in view of the two-dimensional version of the divergence
theorem. This is not the case for the cell membrane Ω since
it is a closed surface. The weak form of equations ((7b), (7c))
can be easily derived following the same path of reasoning.

In conclusion, the weak form of the balance equations can
be written in the time interval [0, 𝑡𝑓] as
Find 𝑦 ∈ V

[0,𝑡𝑓] such that 𝜕
𝜕𝑡𝑏 (𝑦, 𝑦 (𝑡)) + 𝑎 (𝑦, 𝑦 (𝑡))

= 𝑓 (𝑦) ∀𝑦 ∈ V

(10)

where

𝑏 (𝑦, 𝑦) = ∫
Ω
𝑐𝑅𝑐𝑅 + 𝑐𝐿𝑐𝐿 + 𝑐𝐶𝑐𝐶d𝐴,

𝑎 (𝑦, 𝑦) = −∫
Ω
∇Ω [𝑐𝑅] ⋅ 󳨀→ℎ 𝑅d𝐴

+ ∫
Ω
(𝑐𝑅 + 𝑐𝐿 − 𝑐𝐶) 𝑤(1)d𝐴,

𝑓 (𝑦) = ∫
Ω
𝑐𝐿𝑠𝐿d𝐴

(11)

with 𝑦 = {𝑐𝑅, 𝑐𝐿, 𝑐𝐶} and 𝑦 = {𝑐𝑅, 𝑐𝐿, 𝑐𝐶}. Column 𝑦 collects
the time-dependent unknown fields. Column 𝑦 collects the
steady-state test functions that correspond to the unknown
fields in 𝑦.

To computationally solve the (either weak (10) or strong
(7a)–(7c)) problem, constitutive equations must be specified,
which is the subject of Section 2.4. Ellipticity of the operators
and functional and numerical properties of the solution and
of its approximation depend on the constitutive assumptions
and on the choice of the correct functional spacesV[0,𝑡𝑓],V.
However, the identification of these spaces falls beyond the
scope of the present paper.

2.4. Thermodynamics. In view of the assumptions made
on the geometrical evolution of the membrane, there is
no need to distinguish between material and spatial time
derivative. When dealing with composite functions of the
form 𝜙(𝑎(𝑧), 𝑧), we will identify the total derivative with the
roman symbol d and the partial derivative with the symbol 𝜕.
It thus holds

d
d𝑧𝜙 (𝑎 (𝑧) , 𝑧) = 𝜕𝜙

𝜕𝑎
d𝑎
d𝑧 + 𝜕𝜙

𝜕𝑧 (12)

This notation will be used in the time derivative of internal
and Helmholtz free energies, and of entropy.

2.4.1. Energy Balance. Denote withΩ the membrane, i.e., the
spatial domain of problem. Consider an arbitrary regionP ⊂
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Figure 2: Notation.

Ω. The first law of thermodynamics represents the balance
of the interplay among the internal energy of P, the heat
transferred in P and the power due to mass exchanged on
P. The energy balance for the problem at hand reads

dU
d𝑡 (P) = Q𝑢 (P) +T𝑢 (P) , (13)

where Q𝑢 is the power due to heat transfer and T𝑢 is the
power due to mass transfer. Denoting with 𝜕P the bounding
closed curve of P, and making reference to Figure 2 for the
notation, they read

Q𝑢 = ∫
P

𝑠𝑞d𝐴 − ∮
𝜕P

󳨀→𝑞 ⋅ 󳨀→𝑡 ⊥ dℓ (14a)

T𝑢 = ∫
P

𝜇𝑢𝐿𝑠𝐿d𝐴 − ∮
𝜕P

𝜇𝑢𝑅󳨀→ℎ 𝑅 ⋅ 󳨀→𝑡 ⊥dℓ (14b)

The time variation of net internal energyU thus corresponds
to the power expenditure of two external agents: a heat
contribution Q𝑢 where 𝑠𝑞 is the heat supplied by external
agents and 󳨀→𝑞 is the heat flux vector; a mass contribution T𝑢
in which the scalar 𝜇𝑢𝛽 denotes the change in specific energy
provided by a unit supply ofmoles of species 𝛽 = 𝐿, 𝑅.

Since the geometry remains unchanged, one can define
specific internal energy 𝑢 per unit mass or per unit surface,
since none of them changes during the process. We choose to
define it per unit surface, namely,

U (P) = ∫
P

𝑢d𝐴. (15)

Standard application of the surface divergence theorem and
of mass balances (2a)–(2c) leads from (14a) and (14b) to

Q𝑢 = ∫
P

𝑠𝑞d𝐴 − ∫
P

divΩ [󳨀→𝑞 ] d𝐴 (16a)

T𝑢 = ∫
P

𝜇𝑢𝐿𝑠𝐿d𝐴 − ∫
P

divΩ [𝜇𝑢𝑅󳨀→ℎ 𝑅] d𝐴 (16b)

The first law of thermodynamics is thus stated as follows:

∫
P

d𝑢
d𝑡 d𝐴 = ∫

P

𝑠𝑞d𝐴 − ∫
P

divΩ [󳨀→𝑞 ] d𝐴
− ∫

P

divΩ [𝜇𝑢𝑅󳨀→ℎ 𝑅] d𝐴 + ∫
P

𝜇𝑢𝐿𝑠𝐿d𝐴
(17)

It must hold for any region P, since the latter is arbitrary.
After simple algebra, the local form of the first principle thus
reads

d𝑢
d𝑡 = 𝑠𝑞 − divΩ [󳨀→𝑞 ] + 𝜇𝑢𝑅 𝜕𝑐𝑅𝜕𝑡 + 𝜇𝑢𝐿 𝜕𝑐𝐿𝜕𝑡 + 𝜇𝑢𝐶𝜕𝑐𝐶𝜕𝑡 − 󳨀→ℎ 𝑅

⋅ ∇Ω [𝜇𝑢𝑅] + (𝜇𝑢𝑅 + 𝜇𝑢𝐿 − 𝜇𝑢𝐶) 𝑤(1)
(18)

2.4.2. Entropy Balance Equations. The second law of thermo-
dynamics represents the balance of the interplay among the
internal entropy of P and the entropy transferred in P due
to mass exchange and heat transferred on P. The entropy
balance for the problem at hand reads

d𝑆
d𝑡 (P) − d𝑆𝑖𝑟𝑟

d𝑡 (P) = Q𝜂 (P) +T𝜂 (P) , (19)

where 𝑆 is the net internal entropy of P, 𝑆𝑖𝑟𝑟 is the entropy
produced inside P, 𝑄𝜂 is the entropy per unit time due to
heat transfer, and 𝑇𝜂 is the entropy per unit time due to mass
transfer. The individual contributions read

𝑄𝜂 = ∫
P

𝑠𝑞
𝑇 d𝐴 − ∮

𝜕P

󳨀→𝑞
𝑇 ⋅ 󳨀→𝑡 ⊥dℓ, (20a)

𝑇𝜂 = ∫
P

𝜇𝜂𝐿𝑠𝐿d𝐴 − ∮
𝜕P

𝜇𝜂𝑅󳨀→ℎ 𝑅 ⋅ 󳨀→𝑡 ⊥dℓ. (20b)

The scalar 𝜇𝜂
𝛽
denotes the change in specific entropy provided

by a unit supply of moles of species 𝛽. Equation (19) stems
from the nontrivial assumption that mechanics does not
contribute directly to the total entropy flow in the entropy
balance equation. The second law of thermodynamics states
that

d𝑆𝑖𝑟𝑟
d𝑡 ≥ 0. (21)

Analogously to the energy counterpart, we define the specific
internal entropy 𝜂 per unit volume. Standard application of
the divergence theorem and of mass balances (7a)–(7c) leads
to

∫
P

d
d𝑡𝜂 − 𝑠𝑞

𝑇 + divΩ [
󳨀→𝑞
𝑇 ] − 𝜇𝜂𝐿𝑠𝐿 + divΩ [𝜇𝜂𝑅󳨀→ℎ 𝑅] d𝐴

≥ 0
(22)

Bymultiplying per𝑇 ≥ 0, replacing−𝑠𝑞+divΩ[󳨀→𝑞 ] bymeans of
the energy balance (18), and some simple algebra, the entropy
imbalance becomes
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∫
P

𝑇d𝜂
d𝑡 − d𝑢

d𝑡 − 1
𝑇󳨀→𝑞 ⋅ ∇Ω [𝑇] + 𝜕𝑐𝑅𝜕𝑡 [𝜇𝑢𝑅 − 𝑇𝜇𝜂𝑅]

+ 𝜕𝑐𝐿𝜕𝑡 [𝜇𝑢𝐿 − 𝑇𝜇𝜂𝐿] + 𝜕𝑐𝐶𝜕𝑡 [𝜇𝑢𝐶 − 𝑇𝜇𝜂𝐶] + 𝑇󳨀→ℎ 𝑅
⋅ ∇Ω [𝜇𝜂𝑅] + 𝜇𝑢𝑅 𝜕𝑐𝑅𝜕𝑡 + 𝜇𝑢𝐿 𝜕𝑐𝐿𝜕𝑡 + 𝜇𝑢𝐶 𝜕𝑐𝐶𝜕𝑡 − 󳨀→ℎ 𝑅
⋅ ∇Ω [𝜇𝑢𝑅]
+ (𝜇𝑢𝑅 − 𝑇𝜇𝜂𝑅 + 𝜇𝑢𝐿 − 𝑇𝜇𝜂𝐿 − 𝜇𝑢𝐶 + 𝑇𝜇𝜂𝐶)𝑤(1)d𝐴 ≥ 0

(23)

Denote with the symbol 𝜇𝛽 the quantity
𝜇𝛽 = 𝜇𝑢𝛽 − 𝑇𝜇𝜂

𝛽 (24)

and with the symbol 𝐴(1) the following:
𝐴(1) = −𝜇𝑅 − 𝜇𝐿 + 𝜇𝐶 (25)

By noting that

𝑇󳨀→ℎ 𝑅 ⋅ ∇Ω [𝜇𝜂𝑅] = 󳨀→ℎ 𝑅 ⋅ ∇Ω [𝑇𝜇𝜂𝑅] − 󳨀→ℎ 𝑅 ⋅ ∇Ω [𝑇] 𝜇𝜂𝑅 (26)

one finally writes the entropy balance as

∫
P

𝑇d𝜂
d𝑡 − d𝑢

d𝑡 − 1
𝑇󳨀→𝑞 ⋅ ∇Ω [𝑇] + 𝜇𝑅 𝜕𝑐𝑅𝜕𝑡 + 𝜇𝐿 𝜕𝑐𝐿𝜕𝑡

+ 𝜇𝐶𝜕𝑐𝐶𝜕𝑡 − 𝐴(1)𝑤(1) − 󳨀→ℎ 𝑅 ⋅ ∇Ω [𝜇𝑅]
− (󳨀→ℎ 𝑅 ⋅ ∇Ω [𝑇]) 𝜇𝜂𝑅d𝐴 ≥ 0

(27)

2.4.3. Helmholtz Free Energy. The specific Helmholtz free
energy is defined as

𝜓 = 𝑢 − 𝑇𝜂 (28)

and is taken as a function of temperature and concentrations,𝜓(𝑇, 𝑐𝑅, 𝑐𝐿, 𝑐𝐶). It thus holds
𝑇d𝜂
d𝑡 − d𝑢

d𝑡 = −d𝜓
d𝑡 − 𝜂𝜕𝑇𝜕𝑡

= − 𝜕𝜓
𝜕𝑐𝐿

𝜕𝑐𝐿𝜕𝑡 − 𝜕𝜓
𝜕𝑐𝑅

𝜕𝑐𝑅𝜕𝑡 − 𝜕𝜓
𝜕𝑐𝐶

𝜕𝑐𝐶𝜕𝑡
− (𝜂 + 𝜕𝜓

𝜕𝑇) 𝜕𝑇
𝜕𝑡

(29)

which can be inserted in (27) to derive the entropy imbalance
in the final form:

∫
P

(− 𝜕𝜓
𝜕𝑐𝑅 + 𝜇𝑅) 𝜕𝑐𝑅𝜕𝑡 + (− 𝜕𝜓

𝜕𝑐𝐿 + 𝜇𝐿) 𝜕𝑐𝐿𝜕𝑡
+ (− 𝜕𝜓

𝜕𝑐𝐶 + 𝜇𝐶) 𝜕𝑐𝐶𝜕𝑡 − (𝜂 + 𝜕𝜓
𝜕𝑇) 𝜕𝑇

𝜕𝑡 d𝐴
+ ∫

P

− 1
𝑇󳨀→𝑞 ⋅ ∇Ω [𝑇] − 𝐴(1)𝑤(1) − 󳨀→ℎ 𝑅

⋅ ∇Ω [𝜇𝑅] d𝐴 ≥ 0

(30)

where 󳨀→𝑞 = 󳨀→𝑞 + 𝑇𝜇𝜂𝑅󳨀→ℎ 𝑅

2.4.4. Thermodynamic Restrictions. Inequality (30) must
hold for any region P, since the latter was arbitrarily taken.
Therefore, the following local inequality, usually termed after
Clausius-Duhem, yields

(− 𝜕𝜓
𝜕𝑐𝑅 + 𝜇𝑅) 𝜕𝑐𝑅𝜕𝑡 + (− 𝜕𝜓

𝜕𝑐𝐿 + 𝜇𝐿) 𝜕𝑐𝐿𝜕𝑡
+ (− 𝜕𝜓

𝜕𝑐𝐶 + 𝜇𝐶) 𝜕𝑐𝐶𝜕𝑡 − (𝜂 + 𝜕𝜓
𝜕𝑇) 𝜕𝑇

𝜕𝑡 + − 1
𝑇󳨀→𝑞

⋅ ∇Ω [𝑇] − 𝐴𝑤(1) − 󳨀→ℎ 𝑅 ⋅ ∇Ω [𝜇𝑅] ≥ 0

(31)

This inequality must hold for any value of the time
derivative of the temperature and of the concentrations 𝑐𝑅,𝑐𝐿, and 𝑐𝐶. Since they appear linearly in the inequality, the
factors multiplying them must be zero, as otherwise it would
be possible to find a value for the time derivatives that violate
the inequality. Therefore, the following restrictions apply

𝜇𝑅 = 𝜕𝜓
𝜕𝑐𝑅 ,

𝜇𝐿 = 𝜕𝜓
𝜕𝑐𝐿 ,

𝜇𝐶 = 𝜕𝜓
𝜕𝑐𝐶 ,

𝜂 = −𝜕𝜓
𝜕𝑇

(32)

In view of formula (32), the amount 𝜇𝛽 declared in (24)
acquires the meaning of chemical potential and hence the
term 𝐴(1) in (25) turns out to be the affinity of the reaction
(1).

Equation (32) yields to the so-called Clausius-Plank
inequality:

− 1
𝑇󳨀→𝑞 ⋅ ∇Ω [𝑇] − 𝐴(1)𝑤(1) − 󳨀→ℎ 𝑅 ⋅ ∇Ω [𝜇𝑅] ≥ 0 (33)

that splits under the assumptions of Curie’s principle and
thermal equilibrium in the following set of inequalities:

󳨀→ℎ 𝑅 ⋅ ∇Ω [𝜇𝑅] ≤ 0, (34a)

𝐴(1)𝑤(1) ≤ 0. (34b)

2.5. Constitutive Theory. We will assume henceforth that
the system is in thermal equilibrium. The Helmholtz free
energy density is furthermore additively decomposed into
three separate parts:

𝜓 (𝑐𝑅, 𝑐𝐿, 𝑐𝐶) = 𝜓𝑅 (𝑐𝑅) + 𝜓𝐿 (𝑐𝐿) + 𝜓𝐶 (𝑐𝐶) (35)

The free energy density of mobile guest atoms interacting
with a host medium is described by an ideal solution model,
which provides the following free energy density for the
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continuum approximation of mixing of the generic species𝛽 = 𝑅, 𝐿, 𝐶:
𝜓𝛽 (𝑐𝛽)

= 𝜇0𝛽𝑐𝛽 + 𝑅𝑇𝑐𝑚𝑎𝑥𝛽 [𝜗𝛽 ln 𝜗𝛽 + (1 − 𝜗𝛽) ln (1 − 𝜗𝛽)]
(36)

where 𝜗𝛽 = 𝑐𝛽/𝑐𝑚𝑎𝑥𝛽 is the ratio between the concentration
and the saturation limit for each species. The chemical
potential 𝜇𝛽 can be written accordingly to (32) as

𝜇𝛽 = 𝜕𝜓
𝜕𝑐𝛽 = 𝜇0𝛽 + 𝑅𝑇 (ln 𝜗𝛽 − ln (1 − 𝜗𝛽)) (37)

A strategy to satisfy the thermodynamic restriction (34a) is
to model the flux of receptors by Fickian-diffusion, which
linearly correlates

󳨀→ℎ 𝑅 to the gradient of its chemical potential𝜇𝑅: 󳨀→ℎ 𝑅 = −𝑀𝑅 (𝑐𝑅) ∇Ω [𝜇𝑅] (38)

by means of a positive definite mobility tensor𝑀𝑅. The fol-
lowing isotropic nonlinear [15] specialization for the mobility
tensor𝑀𝑅

𝑀𝑅 (𝑐𝑅) = u| 𝑅𝑐𝑚𝑎𝑥𝑅 𝜗𝑅 (1 − 𝜗𝑅) 1 (39)

accounts for saturation. In formula (39), 𝜗𝑅 = 𝑐𝑅/𝑐𝑚𝑎𝑥𝑅 ;𝑐𝑚𝑎𝑥𝑅 is the saturation limit for receptors. The mobility u| 𝑅 >0 represents the average velocity of receptors when acted
upon by a force of 1N/mol independent of the origin of
the force. Definition (39) represents the physical requirement
that both the pure (𝑐𝑅 = 0) and the saturated (𝑐𝑅 = 𝑐𝑚𝑎𝑥𝑅 )
phases have vanishing mobilities. Neither the mobility u| 𝑅 nor
the saturation concentration 𝑐𝑚𝑎𝑥𝑅 is assumed to change in
time. Such a limitation can be removed without altering the
conceptual picture if experimental data indicate an influence
of temperature, stresses, or concentrations. Noting that

∇Ω [𝜇𝑅] = 𝑅𝑇 1
𝑐𝑚𝑎𝑥𝑅

1
𝜗𝑅 (1 − 𝜗𝑅)∇Ω [𝑐𝑅] (40)

Fick’s Law (38) specializes as follows:
󳨀→ℎ 𝑅 = −D| 𝑅∇Ω [𝑐𝑅] (41)

where D| 𝑅 = u| 𝑅 𝑅𝑇 is the receptor diffusivity.

2.6. Chemical Kinetics. The chemical kinetics of reaction (1)
is modeled via the law of mass action:

𝑤(1) = 𝑘𝑓 𝜗𝐿(1 − 𝜗𝐿)
𝜗𝑅(1 − 𝜗𝑅) − 𝑘𝑏 𝜗𝐶(1 − 𝜗𝐶) (42)

At chemical equilibrium, as 𝑤(1) = 0 and 𝐴(1) = 0, the
concentrations obey the relation

𝑘𝑓
𝑘𝑏 =

𝜗eq𝐶(1 − 𝜗eq𝐶 )
(1 − 𝜗eq𝑅 )𝜗eq𝑅

(1 − 𝜗eq𝐿 )𝜗eq𝐿
= exp [−𝜇0𝐶 − 𝜇0𝐿 − 𝜇0𝑅𝑅𝑇 ] = 𝐾(1)eq

(43)

which defines the constant of equilibrium𝐾(1)eq of reaction (1).

2.6.1. Infinitely Fast Kinetics. Experimental evidences [7]
show that (i) the equilibrium constant is high, thus favoring
the formation of ligand-receptor complex and the depletion
of receptors and ligands; (ii) the diffusion of receptors on
the cell membrane is much slower than interaction kinetics.
Accordingly, it can be assumed that the reaction kinetics is
infinitely fast, in the sense that the time required to reach
chemical equilibrium is orders of magnitude smaller than the
time-scale of other processes. For these reasons, we assume
that the concentrations of species are ruled by thermody-
namic equilibrium at all times, and the concentration of
complex 𝑐𝐶 is related to the others by the equation 𝐴(1) = 0,
i.e., from (25) and (37)

𝐴(1) = Δ𝐺0 + 𝑅𝑇 (ln 𝜗𝐶 − ln 𝜗𝑅 − ln 𝜗𝐿 − ln (1 − 𝜗𝐶)
− ln (1 − 𝜗𝐿) − ln (1 − 𝜗𝑅)) = 0 (44)

where Δ𝐺0 = 𝜇0𝐶 − 𝜇0𝐿 − 𝜇0𝑅 is the standard Gibbs free energy.
Far from saturation, when 𝑐𝛽 ≪ 𝑐𝑚𝑎𝑥𝛽 ,

𝑐𝐶 = 𝑐𝑅𝑐𝐿𝛼 (45)

having denoted with 𝛼 the following constant:

𝛼 = 𝑐max
𝑅 𝑐max
𝐿𝑐max
𝐶

exp(Δ𝐺0
𝑅𝑇 ) (46)

2.7. Governing Equations. Making use of (45) and (7a), (7c)
finally becomes

(𝑐𝐿𝛼 + 1) 𝜕𝑐𝑅𝜕𝑡 + 𝑐𝑅𝛼
𝜕𝑐𝐿𝜕𝑡 + divΩ [−D| 𝑅∇Ω [𝑐𝑅]] = 0 (47)

By subtracting (7b) from (7a), it comes out that

𝜕𝑐𝑅𝜕𝑡 + divΩ [−D| 𝑅∇Ω [𝑐𝑅]] − 𝜕𝑐𝐿𝜕𝑡 + 𝑠𝐿 (𝑥, 𝑡) = 0 (48)

with 𝑠𝐿 from (5).These are the governing equations for 𝑐𝐿, 𝑐𝑅,
whereas 𝑐𝐶 can be recovered from (45). Initial conditions read

𝑐𝑅 (𝑡 = 0) = 𝑐0𝑅 (49a)

𝑐𝐿 (𝑡 = 0) = 0 (49b)

𝑐𝐶 (𝑡 = 0) = 0 (49c)

2.8. Weak Form and Numerical Solution. The weak formu-
lation in space results from multiplying the strong form of
governing equations by a suitable set of tests functions and
performing integration upon the domain. Specifically, the
weak form (47), defining with 𝑐𝑅 a test function, reads

∫
Ω
((𝑐𝐿𝛼 + 1) 𝜕𝑐𝑅𝜕𝑡 + 𝑐𝑅𝛼

𝜕𝑐𝐿𝜕𝑡 + divΩ [−D| 𝑅∇Ω [𝑐𝑅]])
⋅ 𝑐𝑅d𝐴 = 0

(50)
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Applying the divergence theoremoverΩ, the former equation
transforms as follows:

∫
Ω
(𝑐𝐿𝛼 + 1) 𝜕𝑐𝑅𝜕𝑡 𝑐𝑅d𝐴 + ∫

Ω

𝑐𝑅𝛼
𝜕𝑐𝐿𝜕𝑡 𝑐𝑅d𝐴

+ D| 𝑅 ∫
Ω
∇Ω [𝑐𝑅] ⋅ ∇Ω [𝑐𝑅]d𝐴 = 0

(51a)

The weak form of (48), defining with 𝑐𝐿 a test function, reads
after easy algebra:

∫
Ω
𝑐𝐿 𝜕𝑐𝑅𝜕𝑡 d𝐴 − ∫

Ω
𝑐𝐿 𝜕𝑐𝐿𝜕𝑡 d𝐴

+D| 𝑅 ∫
Ω
∇Ω [𝑐𝑅] ⋅ ∇Ω [𝑐𝐿]d𝐴

+ ∫
Ω
𝑐𝐿𝑠𝐿 (𝑥, 𝑡) d𝐴 = 0

(51b)

The weak forms (51a) and (51b) can be transformed
in a first-order Ordinary Differential Equation (ODE) in
time if discretization is performed via separated variables,
with spatial test 𝜑𝑖(𝑥) and shape functions 𝜑𝑗(𝑥) and nodal
unknowns that depend solely on time. The usual Einstein
summation convention is taken henceforth for repeated
indexes.

𝑐𝑅 = 𝜑𝑅𝑘 (𝑥) 𝑐𝑅𝑘 (𝑡) ,
∇Ω [𝑐𝑅] = ∇Ω [𝜑𝑅𝑘 (𝑥)] 𝑐𝑅𝑘

𝑐𝐿 = 𝜑𝐿𝑗 (𝑥) 𝑐𝐿𝑗 (𝑡) ,
∇Ω [𝑐𝐿] = ∇Ω [𝜑𝐿𝑗 (𝑥)] 𝑐𝐿𝑗

𝑐𝑅 = 𝜑𝑅𝑖 (𝑥) ,
∇Ω [𝑐𝑅] = ∇Ω [𝜑𝑅𝑖 (𝑥)]

𝑐𝐿 = 𝜑𝐿𝑖 (𝑥) ,
∇Ω [𝑐𝐿] = ∇Ω [𝜑𝐿𝑖 (𝑥)]

(52)

The nonlinear ODEs read

∫
Ω
𝜑𝑅𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) 𝜑𝐿𝑗 (𝑥) d𝐴𝑐𝐿𝑗 (𝑡)

𝛼
𝜕𝑐𝑅𝑘 (𝑡)𝜕𝑡 d𝐴

+ ∫
Ω
𝜑𝑅𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) d𝐴𝜕𝑐𝑅𝑘 (𝑡)𝜕𝑡

+ ∫
Ω
𝜑𝑅𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) 𝜑𝐿𝑗 (𝑥) d𝐴𝑐𝑅𝑘 (𝑡)𝛼

𝜕𝑐𝐿𝑗 (𝑡)
𝜕𝑡

+D| 𝑅 ∫
Ω
∇Ω [𝜑𝑅𝑘 (𝑥)] ⋅ ∇Ω [𝜑𝑅𝑖 (𝑥)] d𝐴𝑐𝑅𝑘 (𝑡) = 0

(53a)

∫
Ω
𝜑𝐿𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) d𝐴𝜕𝑐𝑅𝑘 (𝑡)𝜕𝑡
− ∫
Ω
𝜑𝐿𝑖 (𝑥) 𝜑𝐿𝑗 (𝑥) d𝐴𝜕𝑐𝐿𝑗 (𝑡)

𝜕𝑡 + ∫
Ω
𝜑𝐿𝑖 𝑠𝐿 (𝑥, 𝑡) d𝐴

+ D| 𝑅 ∫
Ω
∇Ω [𝜑𝑅𝑘 (𝑥)] ⋅ ∇Ω [𝜑𝐿𝑖 (𝑥)] d𝐴𝑐𝑅𝑘 (𝑡) = 0

(53b)

For the time discretization of problems (53a) and (53b)
finite difference schemes are generally used [16], for which
the time derivatives of the concentrations are replaced by the
finite differences as

𝜕𝑐𝑅𝑘𝜕𝑡 ≃ 𝑐𝑅𝑘 (𝑡 + Δ𝑡) − 𝑐𝑅𝑘 (𝑡)Δ𝑡 ,
𝜕𝑐𝐿𝑗
𝜕𝑡 ≃ 𝑐𝐿𝑗 (𝑡 + Δ𝑡) − 𝑐𝐿𝑗 (𝑡)

Δ𝑡 .
(54)

Wemake recourse to theBackward Eulermethod that leads to
the following nonlinear problem in 𝑐𝑅𝑘(𝑡+Δ𝑡) and 𝑐𝐿𝑘(𝑡+Δ𝑡):

∫
Ω
𝜑𝑅𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) 𝜑𝐿𝑗 (𝑥) d𝐴𝑐𝐿𝑗 (𝑡 + Δ𝑡)

𝛼
𝑐𝑅𝑘 (𝑡 + Δ𝑡)

Δ𝑡 d𝐴

− ∫
Ω
𝜑𝑅𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) 𝜑𝐿𝑗 (𝑥) d𝐴𝑐𝐿𝑗 (𝑡 + Δ𝑡)

𝛼
𝑐𝑅𝑘 (𝑡)Δ𝑡 d𝐴

+ ∫
Ω
𝜑𝑅𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) d𝐴𝑐𝑅𝑘 (𝑡 + Δ𝑡)

Δ𝑡
− ∫
Ω
𝜑𝑅𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) d𝐴𝑐𝑅𝑘 (𝑡)Δ𝑡

+ ∫
Ω
𝜑𝑅𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) 𝜑𝐿𝑗 (𝑥) d𝐴𝑐𝑅𝑘 (𝑡 + Δ𝑡)

𝛼
𝑐𝐿𝑗 (𝑡 + Δ𝑡)

Δ𝑡
− ∫
Ω
𝜑𝑅𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) 𝜑𝐿𝑗 (𝑥) d𝐴𝑐𝑅𝑘 (𝑡 + Δ𝑡)

𝛼
𝑐𝐿𝑗 (𝑡)
Δ𝑡

+D| 𝑅 ∫
Ω
∇Ω [𝜑𝑅𝑘 (𝑥)] ⋅ ∇Ω [𝜑𝑅𝑖 (𝑥)] d𝐴𝑐𝑅𝑘 (𝑡 + Δ𝑡)

= 0

(55a)

∫
Ω
𝜑𝐿𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) d𝐴𝑐𝑅𝑘 (𝑡 + Δ𝑡)

Δ𝑡
− ∫
Ω
𝜑𝐿𝑖 (𝑥) 𝜑𝑅𝑘 (𝑥) d𝐴𝑐𝑅𝑘 (𝑡)Δ𝑡

− ∫
Ω
𝜑𝐿𝑖 (𝑥) 𝜑𝐿𝑗 (𝑥) d𝐴𝑐𝐿𝑗 (𝑡 + Δ𝑡)

Δ𝑡
+ ∫
Ω
𝜑𝐿𝑖 (𝑥) 𝜑𝐿𝑗 (𝑥) d𝐴𝑐𝐿𝑗 (𝑡)

Δ𝑡
+D| 𝑅 ∫

Ω
∇Ω [𝜑𝑅𝑘 (𝑥)] ∇Ω [𝜑𝐿𝑖 (𝑥)] d𝐴𝑐𝑅𝑘 (𝑡 + Δ𝑡)

+ ∫
Ω
𝜑𝐿𝑖 𝑠𝐿 (𝑥, 𝑡) d𝐴 = 0

(55b)
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(a) (b)

Figure 3: Initial (a) and locally refined (b) meshes.

3. A Case Study

The chemo-transport model in its discrete form (55a) and
(55b) was implemented in a finite element code with a
fully coupled Newton-Raphson solver, first as a script in
Wolfram Mathematica and later in the deal.ii framework
(http://www.dealii.org). The resulting code has been used
to simulate the relocation of Vascular Endothelial Growth
Factor Receptor-2 (a proangiogenic receptor expressed on
endothelial cells, shortened in VEGFR2 henceforth) on the
cell membrane during the mechanical adhesion of cells
onto a ligand-enriched substrate, in a codesigned in vitro
experiment detailed in [7].

Analyzing the evolution in time of VEGFR2 recruitment
induced by immobilized ligands experimentally measured
in [14] as fluorescence intensity of the overall VEGFR2
(free and bound), we calibrated 𝑡𝑓 = 600 s as the time for
completion of the mechanical deformation and 𝑡 = 1𝑠 as the
parameter that identifies a finite time required for binding.
The remaining parameters for the simulation were calibrated
by in vitro assays. The cell radius ℓ = 20𝜇m was calculated
from the measure of radius of 50 endothelial cells (ECs);
receptor diffusivity D| 𝑅 = 0.198𝜇m2/s was obtained in [7]
by Fluorescence Recovery after Photobleaching. The amount
of VEGFR2 on cell membrane per area was calculated by
dividing the number of high affinity binding sites [17, 18] for
cell surface area and resulted in 𝑐0𝑅 = 4.8molecules/𝜇m2 . The
kinetic parameters ligand/receptor were measured by surface
plasmon resonance (SPR)measurements and the equilibrium
constant turned out to be 𝐾(1)eq = 354059. Finally, it has been
taken 𝑐𝑚𝑎𝑥𝐿 = 16000molecules/𝜇m2 and 𝑐𝑚𝑎𝑥𝑅 = 𝑐𝑚𝑎𝑥𝐶 .

The initial discretization on the membrane is depicted
in Figure 3(a). It consists of 6144 quadrilaterals, uniformly
distributed on the spherical surface. The mesh is locally and
automatically refined using the error indicator usually named
after Kelly [19]. This error indicator tries to approximate the
error per cell by integration of the jump of the gradient of the
solution along the faces of each cell. Although developed for
Laplace’s equation, Kelly’s error estimator has proven to be
a suitable tool to generate locally refined meshes for a wide
range of equations, not restricted to elliptic problems. For
this reason and since a devoted class is available in the deal.ii
framework, we used it for the problem at hand. The mesh at

time 𝑡 = 85𝑠 is depicted in Figure 3(b). It consists of 14058
quadrilaterals, graded around the surface of contact between
the cell and the substrate.

Figure 4 depicts the resulting evolution of the concen-
tration of receptors in space and time. Figure 4(a) depicts
a snapshot of 𝑐𝑅 at 𝑡 = 85𝑠 on the surface and locates
points A-E on the membrane. Figure 4(b), which exploits the
axis-symmetry of the problem, shows the concentration of
free receptors on a diametric section. Concentrations range
from zero up to the uniform initial concentration 𝑐0𝑅 =
4.8receptors/𝜇m2. After 60 s, the concentration profile is
perturbed at the bottom of the cell (𝑠 = 0), and such
a perturbation “propagates” with time. This event can be
clearly seen in Figure 4(a) at 𝑡 = 85𝑠. At 𝑡 = 600𝑠, after
the cell spreading, the basal portion of the cell membrane
in contact with the substrate is essentially empty of free
receptors because the equilibrium constant is very high and
the reaction kinetics is assumed to be infinitely fast. Since
no further supply 𝑠𝐿 is provided afterwards, the process
becomes diffusion-dominated, and it slowly evolves towards
a final steady state. At the end of the simulation, after
two hours, the maximum concentration of free VEGFR2
is 0.49receptors/𝜇m2 and a steady state has not yet been
reached.

Immediately after the membrane gets in contact with
the substrate, the evolution of 𝑐𝑅 is governed by chemistry.
The increase of contact area, as results of cell deformation,
further fuels reaction (1), until the cell spreading. Diffusion
and reaction rule the evolution of receptor concentration
afterwards.The time evolution of VEGFR2 recruitment in the
basal portion of the cell membrane is depicted in Figure 5. It
shows the overlay of the outcomes of simulations (continuous
lines) and experiments (red dots displayed as intensity of
fluorescence, which is proportional to the overall amount
of bound and free receptors on the portion of membrane
in contact with the substrate) of the dynamic recruitment
of VEGFR2, normalized to the value it reaches at the final
time 𝑡 = 7200 s. Three phases of complex formation
can be clearly identified in Figure 5 as time proceeds:
(I) contact, (II) chemomechanical, and (III) diffusion. The
depletion of free receptors is clearly visible, whereas the
sum of complex and free receptors concentration must be
a constant by definition. This numerical evidence is seen in

http://www.dealii.org
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Figure 4: Time evolution of the spatial concentration 𝑐𝑅 of free VEGFR2 along the cell membrane. (a) Snapshot at 𝑡 = 85 s on a half of the
membrane, with identification of points A, B, C, D, and E. (b) One-dimensional description of 𝑐𝑅 at different times. Each curve plots the
distribution of free receptors at different times 𝑡 = 60𝑛, with 𝑛 = 0, 1, 2, . . .,120 s from the beginning of the experiment at 𝑡 = 0 to the final
time 𝑡 = 7200 s. Points A, B, C, D, and E correspond to (a).
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Figure 5: Time evolution of the overall amount of bound VEGFR2-
gremlin complex on the membrane compared with fluorescence
intensity from of the overall VEGFR2 (free and bound) in contact
the substrate. The continuous lines correspond to the numerical
simulation data, while points and error bars refer to the experi-
mental data. To allow the comparison, both sets of data have been
normalized to the respective values they reach at the final time 𝑡 =7200 s. The depletion of free receptors is clearly visible, whereas the
sum of complex and free receptors concentration remains constant.
Mass is therefore conserved in our numerical validation.

Figure 5, showing that mass is conserved in our numerical
validation.

The mechanical deformation of the cell is influenced
by the chemical affinity of the VEGFR2-gremlin binding
reaction coupled with intracellular actin dynamics. However,
our current simplified model does not capture yet the com-
plexity of such coupling. Instead, it surrogates the details of
the mechanical deformation with the experimentally guided
assumption of an empirical ad hoc time-sequence of gremlin
supply on increasing portions of the cell membrane; see
Section 2.2. This supply is faster than the contribution of
diffusion, and the cell surface becomes depleted of receptors
very rapidly where the cell adheres to the substrate. When

the mechanical deformation terminates and the cell is even-
tually spread, the diffusion of receptors becomes the rate-
controlling mechanism. During this final phase, receptors
that diffuse across the boundary of the contact surface are
immediately trapped and immobilized by the ligands on the
substrate.

4. Conclusions

A continuum coupled model of transport-reaction has been
dealt with in this paper. It describes the motion of receptors
on the lipid membrane, with pointwise traps that account for
the receptors-ligands-complex reaction. Themodel is framed
in standard thermodynamics [20]. The energy and entropy
contributions of the mass flux in the balance equations are
accounted for. The selection of the Helmholtz free energy
leads to the constitutive characterization, which coupled with
balance equations provides the strong form of the problem of
VEGF receptor recruitment in angiogenesis. The weak form
of the problem is stated, eventually discretized in spatial finite
elements with time discretization governed by the backward
Euler method. Numerical simulations of the relocation of
VEGFR2 on the cell membrane show the performances of the
proposed approach, which in spite of its severe simplifying
assumptions revealed predictive capability in a codesigned in
vitro experiment detailed in [7].

This model allows identifying three different phases,
biologically described for the first time, using cellular in
vitro assays. Mathematical model clearly defines the tem-
poral order of the chemical ligand-receptor interaction, the
mechanical cell deformation, the receptor diffusion on cell
membrane. Such mathematical method will be useful to
predict the endothelial cell responses to different microenvi-
ronments, improving, e.g., the development of bioscaffold for
tissue engineering.

Two strong assumptions are here introduced that will
be removed in future works, namely, the hypothesis of
infinitely fast kinetics (Section 2.6.1) and of rigid membrane
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with externally provided mass supply (Section 2.2). Indeed
the positive outcomes achieved in capturing the membrane
motion of receptors due to chemodiffusion with simpler
surrogate models justify further efforts in adding model
complexities, as complex internalization and cell spreading,
to quote a few.
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