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A B S T R A C T   

Myxoid liposarcoma (MLPS) is a rare soft-tissue sarcoma characterised by the expression of FUS-DDIT3 chimera. 
Trabectedin has shown significant clinical anti-tumour activity against MLPS. To characterise the molecular 
mechanism of trabectedin sensitivity and of resistance against it, we integrated genomic and transcriptomic data 
from treated mice bearing ML017 or ML017/ET, two patient-derived MLPS xenograft models, sensitive to and 
resistant against trabectedin, respectively. 

Longitudinal RNA-Seq analysis of ML017 showed that trabectedin acts mainly as a transcriptional regulator: 
15 days after the third dose trabectedin modulates the transcription of 4883 genes involved in processes that 
sustain adipocyte differentiation. No such differences were observed in ML017/ET. Genomic analysis showed 
that prolonged treatment causes losses in 4p15.2, 4p16.3 and 17q21.3 cytobands leading to acquired-resistance 
against the drug. 

The results dissect the complex mechanism of action of trabectedin and provide the basis for novel combi-
natorial approaches for the treatment of MLPS that could overcome drug-resistance.   

1. Introduction 

Myxoid liposarcoma (MLPS) is a malignant soft tissue sarcoma that 
origins from primitive mesenchymal cells [43]. In most cases it is 
characterised by the translocation t(12;16)(q13;p11) resulting in the 
FUS-DDIT3 oncoprotein, or rarely by the translocation t(12;22)(q13; 
q12) resulting in the EWS-DDIT3 chimera [56]. The FUS-DDIT3 onco-
protein has been reported to inhibit the adipocyte differentiation by the 
downregulation of the transcription factors C/EBPα and PPARγ [36]. 
Although recent research suggests that FUS-DDIT3 exerts its action 

mainly at the epigenetic level by interacting with several chromatin 
regulators[10,56], the exact mechanism of action of this oncoprotein 
and its role in tumour maintenance are still unclear. 

Radiation in combination with surgery represents the gold-standard 
treatment for MLPS, which however is primarily effective against 
localised disease. Chemotherapy is used to treat unresectable and met-
astatic tumours. Anthracyclines are the standard first line treatment, and 
in case of poor response or severe side effects, such as cardiac 
dysfunction, the drug of choice is trabectedin. Trabectedin, a compound 
of marine origin that binds to the minor groove of the DNA, was first 
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approved in Europe in 2007 for the treatment of advanced soft-tissue 
sarcoma after failure of anthracyclines and ifosfamide [13]. In 2015 
the FDA endorsed its use for the treatment of advanced pre-treated 
metastatic liposarcomas and leyomiosarcomas [14] [4]. Prolonged 
administration of trabectedin is feasible as it does not cause cumulative 
toxicity. However, as for most chemotherapeutics, patients develop 
drug-resistance. 

To date, most molecular studies on MLPS have been conducted in cell 
lines models with all their inherent weaknesses, such as consequences of 
immortalisation and absence of microenvironmental components 
mimicking the clinical scenario. Mindful of these issues we studied the 
molecular mechanisms underlying both activity of trabectedin and 
resistance against it choosing as experimental paradigm mice bearing 
patient-derived xenograft models of MLPS previously characterised in 
our laboratory, ML017 and ML017/ET [19] [7]. The former is respon-
sive to trabectedin and was originated from the less common and more 
aggressive round cell MLPS, while the latter is resistant against tra-
bectedin and was obtained from ML017 through repeated in vivo treat-
ments [7]. Our experimental design attempted to reproduce clinical 
treatments details and allowed us to investigate the effects of the drug at 
both the genomic and transcriptional levels. We showed that trabectedin 
mainly acts as transcriptional regulator with major effects after pro-
longed treatment. Acquired-resistance against it was found to be asso-
ciated with the selection of specific genomic features. The multi-level 
integrated analysis employed here sheds light on the molecular inter-
action of trabectedin with MLPS which may engender ideas for thera-
peutic combinatorial strategies that enhance the anti-tumour and pro- 
differentiation effects of trabectedin. 

2. Results 

2.1. Experimental design and aims 

A comprehensive genomic and transcriptomic map was generated 
from 40 tumour biopsy samples obtained from mice bearing ML017 or 
ML017/ET [19] [7] (Supplementary Fig. 1). Omics data was used with 
the following threefold rationale: i) to characterise the genomic and the 
transcriptomic landscape of PDX models at basal conditions helping to 
adjudge the extent to which they represent clinical MLPS; ii) to deter-
mine genomic alterations responsible for acquired resistance against 
trabectedin; iii) to explore molecular mechanisms associated with tra-
bectedin activity. 

2.2. ML017 and ML017/ET possess genomic features of clinical MLPS 

The genomic landscape of the diploid genome (Supplementary 
Fig. 2) of tumours was analysed using the “One-Seq” technology. This 
uses a single library preparation to assess simultaneously the presence of 
genome-wide somatic copy number alterations (SCNAs) and single 
nucleotide variants (SNVs) in the full length sequence of 5791 coding 
genes and intersperse regions on the genome. We used this database to 
estimate the extent to which the genome of our PDX models overlaps 
with that from clinical MLPS. 

We identified the canonical gene translocation FUS-DDIT3 in all 
ML017 and ML017/ET samples together with its DDIT3-FUS counterpart 
(Table 1). The breakpoints on both genes were at the intron level, 
downstream exon 7 of FUS and exon 1 of DDIT3 (Supplementary Fig. 3). 

The total number of SNVs identified in ML017 and ML017/ET sam-
ples at basal conditions was compared with data for cancer types in The 
Cancer Genome Atlas (TCGA). Consistent with the mutational load of 
the sarcoma (SARC) cohort [1], i.e. less than 100 variants per sample, 
our models belong to the less mutated cancer types (Supplementary 
Fig. 4). As to the SCNAs dataset amplifications in cytobands 13q, 8p23.3, 
8q23.1 and deletions in the chromosome arm 16q were also identified in 
MLPS patients (Supplementary Table 1) [22] [24]. 

ML017 and ML017/ET had a median number of variants of 16 and 19 

per sample, respectively, irrespective of treatment schedule (Supple-
mentary Fig. 5). Classification of variants afforded mainly missense 
SNVs. Both models showed a prevalence of C > T base changes, although 
ML017 had more transitions than transversions (Supplementary Fig. 6). 
While none of the genes most frequently mutated in sarcoma, such as 
TP53, RB1, ATRX were mutated in our cohort, PTEN and PIK3CA, which 
are specific for MLPS, were mutated in all ML017 and ML017/ET sam-
ples (Supplementary Fig. 7, Supplementary Table 2). 

These SNVs and SCNAs landscapes suggest that the genome of our 
ML017 and ML017/ET models genuinely reflect MLPS tumours. 

2.3. Effects of trabectedin on genomic architecture 

We focused on the effects of trabectedin on the chromosomal ar-
chitecture of ML017 and ML017/ET. Tumours were characterised by 
gains with a mean length of 600 kbp and losses with a mean length of 2 
Mbp (Supplementary Table 1). First, we compared the total number of 
SCNAs across all conditions to investigate whether prolonged treatment 
had engendered drug-induced chromosomal instability. Boxplots show 
at basal level a difference between ML017 and ML017/ET in the total 
amount of SCNAs, with a median of 741 and 1574 (p < 0.01), respec-
tively (Supplementary Fig. 8). After 24 h of treatment with trabectedin 
or doxorubicin the total amount of SCNAs with ML017 increased to 
levels seem in those with ML017/ET (Supplementary Table 2). 

In order to identify recurrent SCNA regions with high confidence and 
to overcome technical bias, we characterised SCNAs as significant by 
GISTIC2 algorithm only when present in all four replicates per condi-
tion. This strategy allowed the selection of only the most reproducible 
and consistent genomic events. 

Considering the distribution of SCNAs across the different experi-
mental conditions, regions in gains or in loss can be grouped into three 
distinct groups (Fig. 1). Groups I in both panel A and B of Fig. 1 include 
regions that are common to both models and are stable under each 
condition, thus they represent specific features of these PDX models. 
Instead, groups II are composed of gains, i.e. 15q14, 10q24.32, 12p13.33, 
or loss, i.e. 3q26.1, that are irremediably lost after the first dose of drug, 
irrespective of trabectedin or doxorubicin treatment. They represent 
regions of sensitivity to pharmacological treatment. Group III in panel A 
harbours regions acquired after treatment with trabectedin or doxoru-
bicin. They also characterise ML017/ET under each condition, thus they 
represent non-specific features associated with drug treatment but not 
necessarily related to drug sensitivity. Otherwise, Group III in panel B is 
composed of regions that are specific for ML017/ET in cytobands 
4p15.2, 4p16.3 and 17q21.31. The exclusivity of these regions to 
ML017/ET renders them possible specific markers of acquired resistance 
against trabectedin. 

Together this evidence highlights three genomic features: those in 
Group I not affected by treatment and specific of the models, those 
related to sensitivity to treatment with either drug, such as those in 
Groups II, and those in Group III specific for ML017/ET which could be 

Table 1 
DNA structural variants identified in all samples of ML017 and ML017/ET.  

Chrom Breakend Ref Alt Translocation Variant 
Description 

chr12 57914179 G G] 
chr16:31198193] 

FUS-DDIT3 gene fusion 
and 
frameshift 
variant 

chr16 31198192 C C] 
chr12:57914180] 

chr12 57914182 G [chr16:31198193 
[G 

DDIT3-FUS gene fusion 
and 
frameshift 
variant 

chr16 31198192 C [chr12:57914183 
[C 

Chrom, chromosome; Breakend, position of the breakpoint; Ref, reference base; 
Alt, alternate base. First two lines report the canonical FUS-DDIT3 translocation, 
the last two report its counterpart DDIT3-FUS. 
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defined as markers of resistance. 

2.4. Identification of novel variants affecting MLPS 

In addition to well-known mutations in the PTEN and PIK3CA genes, 
we observed the genes ANK3, CRYGB, DSC3, FAT4, IMPDH2, MUC7 and 
PAK7 to harbour mutations in both models (Supplementary Fig. 9, 
Supplementary Table 3). All samples were characterised by the same 
mutated locus in each gene with comparable allelic fraction (e.g. the 
number of altered reads over the total) close to 50% (Supplementary 
Table 4). The high rate of shared mutations and the allelic fraction 
suggest the clonal nature of the tumour cells. These genes can be divided 
into two groups. One is composed of benign or well-tolerated variants in 
the ANK3, CRYGB, FAT4 (c.9674C > A) and MUC7 genes. The other is 
composed of damaging or deleterious variants in genes like IMPDH2, 
DSC3, PAK7 (also known as PAK5) and FAT4 (c.9678 T > A) (Supple-
mentary Fig. 10). 

A comparison of the genomes of ML017 and ML017/ET revealed 
differentially mutated genes specific to each model (Fig. 2): KCNA3 was 
mutated in ML017 only, whilst variants of NLGN1, UVSSA, SSTR5, 
SLC1A2 were exclusively seen in ML017/ET (Supplementary Table 3). 

In summary, beside specific MLPS genes like PTEN and PIK3CA, we 
identified novel variants in the genes IMPDH2, DSC3, PAK7 and FAT4 
(c.9678 T > A) with a possible impact on the protein structure. Com-
parison of the models showed that KCNA3 is likely to be associated to 
trabectedin responsiveness, while variants in NLGN1, UVSSA, SSTR5, 
SLC1A2 genes were selected under drug pressure in ML017/ET. 

2.5. ML017 and ML017/ET present different transcriptional landscape at 
basal conditions 

Transcriptional effects of trabectedin on the PDX models were 
studied using the same experimental design used for the genomic 
analysis. The following three approaches were taken: i. comparison of 
models at basal conditions to identify transcriptional markers that could 
explain acquired resistance; ii. study of time-dependent effects of tra-
bectedin; iii. comparison of trabectedin with doxorubicin in terms of 
transcriptional effects. 

In order to identify key transcriptional features that could explain 

drug responsiveness, we performed a differential expression analysis 
between ML017/ET and ML017 at basal condition. We identified 243 
differentially expressed genes (DEGs) (Fig. 3 panel A, Supplementary 
Table 5). Of these 74 were up-regulated and 169 down-regulated and 
characterise the differences between the two models (Fig. 3 panel B). 
They were not significantly involved in any biological pathway and most 
belonged to the same genomic cytobands. Indeed, 63 down-regulated 
genes mapped on focal regions in 4p16.3, 4p15.2 and 17q21.3, the 
same cytobands of Group III in Fig. 1 panel B exclusively lost in ML017/ 
ET model (Supplementary Table 6). Supplementary Fig. 11 shows that 
transcriptional down-regulation and loss of genetic material is consis-
tent. Gene expression was not changed by drug treatment in ML017/ET 
suggesting they could be considered as a specific discriminant between 
responsiveness and resistance (Supplementary Fig. 12). 

2.6. Time-dependent transcriptional effects of trabectedin 

Exploration of the whole cohort of transcriptional data identified 
three major groups (Fig. 4). The largest group (right-bottom side) is 
composed of ML017 samples under CTRL, ET-24 and ET-72 conditions 
and of most samples from ML017/ET. Two subgroups could be distin-
guished, one relating to ML017 (samples indicated by triangles) and the 
other to ML017/ET (samples indicated by circles). The second group 
(depicted in orange) represents samples from animals bearing either 
ML017 or ML017/ET which received doxorubicin. This treatment pro-
duced similar responses in both models, in contrast to basal samples and 
those from mice treated with trabectedin. The third group encompasses 
all four replicates of ML017 obtained at 15 days after trabectedin. It 
suggests different transcriptional modulation at this time point exclu-
sively in the ML017 model when compared to the other groups. 

In order to identify the DEGs that characterise the groups, we studied 
the time-course of transcriptional modulation induced by drug treat-
ment. We compared each time point to basal conditions per model 
independently. As shown in the left upper panel of Fig. 5, the strongest 
modulation in ML017 was elicited by trabectedin at 15 days after the 
third dose with 4883 DEGs. The number of DEGs at 24 and 72 h was 828 
and 209, respectively (Supplementary Table 7). Genes were grouped 
into pathways through gene set enrichment analysis (GSEA) (Fig. 5, 
lower panel). Circles are coloured according to normalised enrichment 

Fig. 1. SCNAs in ML017 and ML017/ET models. 
Cytobands (reported on the left) interested by copy number gains (Panel A, in red) or copy number loss (Panel B, in blue) in ML017- (black) and ML017/ET- (grey) 
bearing mice models. Barplot on the right show the log10 number of genes in each affected region. CTRL, basal conditions; ET-24 and ET-72, 24 and 72 h after the 
first dose of trabectedin; ET-15, 15 days after the third dose of trabectedin; DOXO, 24 h after one dose of doxorubicin. 
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score (NES), red in case of up-regulation and green for down-regulation. 
At 24 h and at 72 h, there were activated pathways related to the 
transcriptional regulation of TP53 and transcription. At the later time 
point genes were grouped into 233 pathways, of which 40 were acti-
vated and 193 inhibited, corresponding to the major transcriptional 
response (Supplementary Table 8). The activated pathways were mainly 
involved in functions that suggest structural and phenotypic changes 
like remodelling of extracellular matrix organisation, the production of 
collagen and the regulation of the insulin-like Growth Factor (IGF). 
Pathways germane to methylation of the DNA, the regulation of rRNAs 
and the pathway of the RNA polymerase I were inhibited at this time 
point (Supplementary Table 8). Taken together, this data is consistent 
with the notion that trabectedin exerts an initial cytotoxic effect whilst 
altering the tumour cell phenotype after prolonged treatment. 

As to results for ML017/ET, the strongest response to the drug 
occurred at 24 h (1052 DEGs), with a weaker effect at 72 h and 15 days 

(219 and 3 DEGs, respectively) compared to basal conditions (right 
upper panel Fig. 5). At the 24 h trabectedin affected 34 pathways, with 
activation in 30 and inhibition in 4 cases (right bottom panel Fig. 5). 
Among pathways which were activated are transcriptional regulation of 
TP53 and RNA polymerase II, cell cycle and homology direct repair and 
those regulated at this time point in the ML017 tumour. At 72 h, the 
main effect was immune activation, while at 15 days post dosing altered 
pathways were not observed. 

These results suggest that trabectedin induced a strong transcrip-
tional response in ML017 mice after prolonged treatment. In contrast, in 
ML017/ET mice a strong response was only seen at early time points. 

Doxorubicin altered transcription in both models (Supplementary 
Fig. 13) with a greater effect on ML017 (2420 DEGs) than ML017/ET 
(484 DEGs) (Supplementary Table 8). In both models, down-regulated 
genes were mainly associated with pathways pertinent to the cell 
cycle, DNA repair, Rho GTPases and regulation of cholesterol 

Fig. 2. Differentially mutated genes between ML017 and ML017/ET. 
Panel A shows the log odds ratio of genes reported on the right. For each gene the number of samples carrying the mutation and the associated p-value are shown (*** 
less than 0.001, ** less than 0.01). Panel B shows the oncoplot of differentially mutated genes and their classification as reported in the legend. 
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biosynthesis, while the activated ones were mainly related to TP53 and 
extracellular matrix remodelling. Enrichment was far lower than that 
seen after trabectedin treatment (Supplementary Table 8). 

Overall, these results suggest that the two drugs triggered different 
transcriptional responses. Some effects seen 24 h after administration 

were similar in terms of affected pathways, although involving different 
genes and different enrichment scores. Genes deregulated by doxoru-
bicin in ML017/ET participated in the same biological functions as those 
affected in ML017, consistent with the fact that ML017/ET is sensitive to 
doxorubicin. 

Fig. 3. Transcriptional comparison of ML017 and ML017/ET at basal condition. 
Panel A shows the mean of normalised counts versus the log fold change associated to each gene. Points coloured in blue represent differentially expressed genes 
(DEGs). Panel B shows the heatmap related to the z-score of log normalised counts of the 243 DEGs (rows) in the comparison between ML017/ET and ML017 at basal 
conditions (columns). Colours are as reported in the legend: red for positive values, blue for negative values. Rows and columns are clustered as reported in Materials 
and methods. 

Fig. 4. Unsupervised analysis of gene counts in ML017 and 
ML017/ET. 
Figure shows the Principal Component Analysis (PCA) of the 
whole cohorts ML017 and ML017/ET. Samples from ML017 
are indicated with triangles, samples from ML017/ET with 
circles. Colours refer to conditions as reported in the legend. 
CTRL, basal conditions; ET-24 and ET-72, 24 and 72 h after 
the first dose of trabectedin; ET-15, 15 days after the third 
dose of trabectedin; DOXO, 24 h after one dose of 
doxorubicin.   
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2.7. Discovering yet unknown transcript modulation 

We wished to investigate whether trabectedin engages transcrip-
tional mechanisms which have not yet been described. To this end, we 
customised the Tuxedo protocol [37] for transcript-level analysis (Sup-
plementary Fig. 14) as explained under Materials and Methods. 

The number of known transcripts were similar under each condition 
in ML017 (mean of 82705.3) and ML017/ET (mean of 83630.47) 
(Supplementary Table 9). The mean number of unknown transcripts 
under ET-15 conditions in ML017 was 90856.75, and under other con-
ditions 73558.81. The equivalent number under ET-15 conditions for 
ML017/ET was 54337.67. Even though the amount of identified known 
transcripts was similar across conditions and models, major differences 
occurred at novel transcript level, especially in ML017 at 15 days. 

In order to investigate further the effects of trabectedin treatment, 
we made a differential expression analysis based on transcript counts. 
The transcriptional differences are shown in Supplementary Fig. 15. The 
number of differentially expressed transcripts (DETs) followed the same 
trend as that seen in the gene level analysis. The major transcriptional 
modulation was identified at 15 days after the third dose of trabectedin 
in ML017 with 7602 DETs (Supplementary Table 10), thus we focused 
further analysis on this time point. We selected only unknown 

transcripts and removed those (n = 48) that were consistently modu-
lated in ML017 by both trabectedin and doxorubicin at each time-point. 
We obtained 2719 DETs specifically related to ET-15, of which 2354 
were described as possible new isoforms of already known genes most of 
them related to one gene (Supplementary Fig. 16). The remaining 365 
were novel transcripts and because of their 200-nucleotide length they 
were classified as long non-coding RNAs. The 2354 specific DETs 
described as potentially new isoforms were analysed with CPAT (see 
Materials and methods) in order to assess the probability of their 
translation into proteins. For 990 of them this was probable (Supple-
mentary Table 11). 

In summary, we showed that trabectedin elicits a transcriptional 
response at later time point that involved not yet known transcripts that 
are worth of further investigation. 

3. Discussion 

In this work we integrated genomic and transcriptomic data to 
investigate two PDX models of MLPS in order to evaluate the molecular 
features responsible for sensitivity to and resistance against trabectedin. 
These results can be summarised as follows: i. from a molecular point of 
view, in vivo models ML017 and ML017/ET mirror the biological 

Fig. 5. Trabectedin-induced pathways over time. 
Figure shows the number of differentially expressed genes (DEGs) modulated by trabectedin in ML017 model on the left or in ML017/ET on the right. Control (CTRL) 
is set to zero. 24 h, 72 h, 15d represent the considered time points: 24 and 72 h after the first dose and 15 days after the third dose of trabectedin. Lower panel shows 
most significant pathways from Gene Set Enrichment Analysis (GSEA) with Reactome database for each time point. The colour represents the normalised enrichment 
score (NES) as indicated in the legend: positive values for positive enrichment (up-regulation), negative values for negative enrichment (down-regulation). Radius of 
the circles is proportional to the number of genes in the pathways. 
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features of MLPS tumour in the clinic, thus they can be considered 
suitable models of MLPS; ii. at the transcriptional level, the pleiotropic 
effects of trabectedin are time-dependent and can be divided into two 
phases, an early cytotoxic followed by a delayed differentiation effect; 
iii. the molecular mechanisms responsible for acquired resistance 
against trabectedin could be associated with loss of the three genomic 
regions 4p15.2, 4p16.3 and 17q21.31. 

MLPS is an uncommon disease and epidemiological and clinical 
studies of it are rare [8]. In clinical trials MLPS is usually studied 
together with other sarcomas, thus the effectiveness of treatments spe-
cifically against this malignancy are masked and indeterminable [4]. In 
the light of the above, the use of PDX models represents a precious 
means in preclinical cancer research. The ML017 model was derived 
from a patient affected with the aggressive form of MLPS known as 
round cell MLPS who did not receive any previous treatment as 
described in Frapolli et al. [19]. ML017 proved high sensitivity to tra-
bectedin treatment that made it suitable for the 2-years development of 
its resistant counterpart ML017/ET [7]. Given this premise, the models 
used in this work are a valuable tool to study the sensitivity to and the 
resistance against trabectedin and may be useful to test new treatment 
strategies. 

Although considerable research efforts have focussed on the char-
acterisation of MLPS, molecular details of its response to drug treatment 
have to our knowledge not been published. Our results suggest that in 
ML017-bearing mice trabectedin elicits strong transcriptional modula-
tion 15 days after the third dose, whilst failing to induce substantial 
genomic alterations. At this timepoint we found remodelling of the 
extracellular matrix, the production of collagen, the formation of elastic 
fibres and the regulation of the insulin-like Growth Factor (IGF). These 
effects suggest that trabectedin is able to induce a phenotypic change in 
MLPS cells leading to the reactivation of adipocytic differentiation. This 
molecular evidence is consistent with morphological changes identified 
in vitro and in vivo previously [17]. The transformation of precursors 
mesenchymal cells into fully differentiated adipocytes is regulated by 
the interaction between the PPARγ and C/EBPα transcription factors, 
and in MLPS this process is blocked by FUS-DDIT3 [36]. Here, we 
showed that trabectedin modulates the transcriptional activity of MLPS 
initiating the recovery of adipocytic differentiation. Although a study 
has proposed a direct effect of trabectedin on the chimera [15], the role 
of FUS-DDIT3 in this process is unclear. Recent works have shown a 
strong interaction of the FUS-DDIT3 with other proteins, such as the 
SWI/SNF chromatin remodelling complex that is followed by altered 
gene expression [28,56]. The study of the modulation of the FUS-DDIT3 
genome-wide binding to the DNA followed by trabectedin treatment 
using ChIP-Seq approach is currently in progress to define the selective 
mechanism of action of the drug in MLPS more precisely. 

TP53 mutations in MLPS are rare and justify the sensitivity of these 
tumours to treatment with drugs like trabectedin or doxorubicin [39]. 
Indeed, the first response seen at early time points in ML017 was the 
cytotoxic effects elicited by the canonical activation of TP53 and MAPK 
pathways. In the resistant model ML017/ET trabectedin elicited a 
transcriptional response only at 24 h, probably due to an early cytotoxic 
effect. Transcriptional effects on adipocyte differentiation were 
observed later in ML017 and not in ML017/ET, confirming the unique 
mechanism of action of trabectedin. In this light, ML017/ET model 
might be a useful means to explore the use of drug combinations to 
overcome drug-resistance. 

Acquired drug-resistance in cancer cells involves cellular and mo-
lecular mechanisms which ultimately lead to clinical relapse and tumour 
progression [53]. In MLPS these mechanisms are still unknown [18] 
[3,29]. ML017 and ML017/ET had differentially mutated genes, KCNA3 
in ML017 and variants in NLGN1, UVSSA, SSTR5, SLC1A2 in ML017/ET. 
Cytobands 4p15.2, 4p16.3 and 17q21.31 were specifically lost in 
ML017/ET. Since ML017/ET was established through continuous pas-
sages in mice following a strict schedule of trabectedin treatment [7], 
these three regions might have been lost upon drug pressure. The 

specificity of their loss for ML017/ET identifies them as features of 
sensitivity to trabectedin the loss of which engendering resistance 
against the drug. Among the genes mapped on the lost band 4p16.3 there 
was UVSSA that carries an in-frame deletion. UVSSA (UV-stimulated 
scaffold protein A) is involved in the Transcription-Coupled Nucleotide 
Excision Repair (TC-NER), a mechanism that removes helix-distorting 
lesions from the genome [51]. Loss of UVSSA, even if compatible with 
cell growth [45], leads to deficient TC-NER [20]. Cells with defective 
TC-NER are resistant to trabectedin treatment[4,26]. The absence of 
UVSSA in ML017/ET, that has been observed before [7], might well be 
implicated in trabectedin-induced acquired resistance. The knowledge 
of the molecular mechanism associated with drug resistance can support 
future development of combinatorial therapeutic strategies that can 
reactivate the differentiation program via different pathways as in the 
case of pioglitazone [18]. 

Differences between ML017 and ML017/ET at the genomic level 
were accompanied by differential transcriptional regulation. We iden-
tified 243 DEGs. Although none of them could be linked to specific 
biological functions, most mapped onto chromosomal regions 4p16.3, 
4p15.2 and 17q21.3 which were lost in ML017/ET. This result suggests 
that the loss of this genetic material corresponds to a coherent change of 
transcriptional activity and commends 4p16.3, 4p15.2 and 17q21.3 as 
specific markers of sensitivity to trabectedin. 

In conclusion, our comprehensive study of two MLPS models char-
acterises the pharmacogenomics of trabectedin in relation to the sensi-
tivity to and resistance against this drug in MLPS. The genomic losses in 
4p16.3, 4p15.2 and 17q21.3 represent a novel insight into the mecha-
nism of resistance that warrant further investigation. Moreover, late 
transcriptional responses to trabectedin leading to differentiation pro-
vide new knowledge of potential clinical relevance, thus being of help to 
design novel therapeutic strategies to enhance tumour response. 

4. Materials and methods 

4.1. Animals 

Six- to eight-week-old female CD1 nude mice were obtained from 
Charles River Laboratories (Calco, Italy) and housed in individually 
ventilated cages with sterilized food and water ad libitum and handled 
under specific pathogen-free conditions in the Animal Care Facility of 
the Mario Negri Institute which meets international standards. Mice 
were regularly checked by a certified veterinarian who is responsible for 
health monitoring, animal welfare supervision, experimental protocols 
and review of procedures. Procedures involving animals and their care 
were conducted in conformity with the following laws, regulations, and 
policies governing the care and use of laboratory animals: Italian Gov-
erning Law (D.lgs 26/2014; Authorization n.19/2008-A issued March 6, 
2008, by the Ministry of Health); Mario Negri Institutional Regulations 
and Policies providing internal authorisation for persons conducting 
animal experiments (Quality Management System Certificate—UNI EN 
ISO 9001:2008—Reg. No. 6121); the NIH Guide for the Care and Use of 
Laboratory Animals (2011 edition) and EU directives and guidelines 
(EEC Council Directive 2010/63/UE), and in line with guidelines for the 
welfare and use of animals in cancer research [54]. 

4.2. Drugs 

Trabectedin (Yondelis®, ET743) was kindly supplied by PharmaMar, 
S.A. (Colmenar Viejo, Spain). They were dissolved in water and further 
diluted in saline immediately before use. Doxorubicin (SANDOZ clinical 
formulation) was diluted with water immediately before use. 

4.3. Tumour models 

The ML017 patient-derived round-cell myxoid liposarcoma xeno-
graft was maintained through serial transplantation in mice, as 
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previously described [19]. Briefly, tumours from donor mice were cut 
into small fragments of about 3 × 3mm that were engrafted subcuta-
neously in female athymic nude mice under isoflurane anaesthesia. The 
maintenance of the original histological features of the tumours grown 
was verified to maintain the clinical relevance of the model. ML017/ET 
was obtained from ML017 through repeated in vivo treatment with tra-
bectedin until acquiring a resistant phenotype as described in Bello et al. 
[7]. When tumour burden reached about 300 to 400 mg, mice bearing 
ML017 or ML017/ET xenografts were randomised to receive trabectedin 
0.15 mg/kg intra-venously, every 7 days for three times (q7dX3) or 
doxorubicin 8mg/kg i.v. every 7 days for two times (q7dx2). Tumour 
growth was measured using Vernier caliper, and tumour weights were 
calculated by the formula: length x (width)2/2. 

4.4. FACS analysis 

DNA analysis content was performed in tumour cells derived from in 
vivo models. The two tumour tissues ML017 and ML017/ET were me-
chanically disaggregated by MediMachine (BD Biosciences, Franklin 
Lakes, New Jersey, USA). After disaggregation of the tissue, the cell 
suspension was filtered using a 100 μm CellTrics disposable filter (Sys-
mex Europe, GmbH, Bornbarch, Norderstedt, Germania) and then fixed 
with 70% Ethanol. 

After at least 4 h in ethanol, 2 × 106 cells were incubated over night 
at 4 ◦C with 1 ml of Propidium Iodide 25 μg/ml (Calbiochem, Merck 
Burlington, Massachusetts, USA) and 12.5 μl of RNAse 1 mg/ml (Cal-
biochem, Merck Burlington, Massachusetts, USA) in PBS. DNA analysis 
was performed with a Beckton Dikinson FACSCalibur flow cytometer 
(BD Biosciences, Franklin Lakes, New Jersey, USA) equipped with blue 
(488 nm) and red (630 nm) lasers. To construct each histogram 
10.000–20.000 cells were analysed for ploidy evaluation. Instrument 
was calibrated with an aliquot of peripheral blood mononuclear cell 
(PBMNC) that was also used as an internal diploid standard. Aneuploidy 
was estimated by the DNA index value, calculated as the ratio between 
the modal channel of the G0/G1 peak of the sample under study and the 
modal channel of the G0/G1 peak of the reference standard. For a 
diploid cell population the DNA index is 1.00. 

4.5. DNA and RNA extraction 

gDNA and total RNA were extracted from tumour specimens with the 
QIAamp DNA Mini kit and (QIAGEN, Hilden, Germany) and the miR-
Neasy Mini kit (QIAGEN, Hilden, Germany) respectively, following 
protocols’ instructions and using an automatic nucleic acid purification 
system (Qiacube, QIAGEN, Hilden, Germany). 

Before library preparation, gDNA and RNA concentration were 
evaluated using Qubit® dsDNA High Sensitivity Assay Kit and Qubit™ 
RNA High Sensitivity Assay Kit (Invitrogen, Carlsbad, California, USA) 
respectively, while the quality was established using 4200 Tapestation 
(Agilent Technologies, Santa Clara, California, USA). 

4.6. DNA and RNA sequencing 

200ng of DNA were sheared on Bioruptor (Diagenode, Seraing 
(Ougrée), Belgium) then purified with AMPure XP beads (Beckman 
Coulter, Brea, California, USA). Following the Sure Select XT protocol 
(Agilent Technologies, Santa Clara, California, USA), libraries were 
generated using the Bravo automatic liquid handling station (Agilent 
Technologies, Santa Clara, California, USA). OneSeq Constitutional 
Research Panel (Agilent Technologies) was used as capture probes to 
determine structural variants and mutations of 5791 disease-related 
genes. After the last AMPure XP beads purification, samples were 
examined for quality and quantity and the sequencing run was done on a 
NextSeq 500 sequencer (Illumina San Diego, California, USA) using a 2 
× 150 high-output flow cell with 15 samples/run. 

Following the TruSeq Stranded Total RNA protocol, 500 ng of RNA 

with RIN value between 6 and 9 was sequenced. Libraries with optimal 
quality and quantity were run on NextSeq 500 sequencer (Illumina San 
Diego, California, USA) using a 2 × 150 high-output flow cell with 6 
samples/run. 

4.7. High throughput sequencing data analysis 

4.7.1. Data pre-processing 
Raw sequences were demultiplexed with bcl2fastq Conversion Soft-

ware (Illumina [6]) using –no-lane-splitting parameter, obtaining two 
reads per sample. FastQC [5]) was used for quality control of fastq files 
that were simultaneously visualised through MultiQC [16]. 

4.7.2. DNA-Sequencing 
For DNA-Sequencing analysis we used a public available pipeline 

named bcbio-nextgen [12] that was configured and run on an in-house 
high-performance computing platform. Raw reads were aligned on 
hg19 human genome with BWA-MEM aligner [27] version 0.7.17. 
Sequencing generated a mean of 55.48 M reads per sample with a mean 
coverage of 91.82×. In order to avoid mouse genome contamination we 
filtered out mouse sequencing reads (mm10 genome version) with 
disambiguate software [2]. Somatic variants were called matching each 
tumour to the healthy sample and retained when called by both 
MuTect2 [11] version 1.1.5 and VarDict [25] variant callers. For variant 
impact prediction we used: PolyPhen [41], SIFT [33], CADD [42]. vcf 
(Variant Call Format) files were stored in a GEMINI database [34] that 
was converted into a MAF (Mutation Annotation Format). Maftools [31] 
was used for data visualisation and identification of differentially 
mutated genes. Lolliplots were done with trackViewer [50]. Somatic 
Copy Number Alterations calling was done through CNVkit [49] version 
0.9.4. GISTIC2.0 [32] was used to define frequent altered regions in the 
whole cohort of ML017 and ML017/ET samples. GISTIC2.0 was run 
under both broad and focal configurations with default settings. In order 
to define altered regions specific of each condition, regions were 
retained when called as significant in all four replicates for each con-
dition. Genomic data visualisation was done with the Integrative 
Genome Viewer (IGV) [44]. 

4.7.3. RNA-Sequencing 

4.7.3.1. Gene-level analysis. In order to remove RNA reads from the 
mouse genome, we used the In silico Combined human-mouse Reference 
Genome (ICGR [9]) approach combining hg19 human genome and mm10 
mouse genome with hisat2 aligner [23]. Then, we selected human 
aligned reads only and used bcbio-nextgen pipeline [12]. Post-alignment 
quality control was performed with bcbioRNASeq [47] and based on 
quality parameters we removed from further analysis a total of three 
samples from ML017/ET, one from CTRL, ET-72 and ET-15 conditions 
each. Gene counts were computed with the wicked-fast inference algo-
rithm of Salmon [35]. Then, salmon quantification was read with 
tximport [46]. Differential expression analysis was done with DESeq2 
package [30] contrasting each treatment condition with controls in each 
model, independently, or contrasting the basal conditions of ML017/ET 
versus ML017. Differentially expressed genes (DEGs) were filtered with a 
p-adjust less than 0.05. Pathway analysis was done using clusterProfiler 
package [55] performing the Gene Set Enrichment Analysis (GSEA [48]) 
sorting genes according to their log2 Fold Change, from the most up- 
regulated to the most down-regulated, with the Reactome database 
[21]. Clustering of the z-score normalised log values of gene counts was 
done with Ward variance minimisation algorithm. 

4.7.3.2. Transcript-level analysis. For transcript-level analysis and 
identification of novel isoforms, we adapted the Tuxedo protocol pre-
sented in Pertea et al. [37]. Specifically, we aligned raw sequencing 
reads with hisat2 aligner [23], then we used StringTie [38] for 
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transcripts assembly and quantification with hg19 annotation file. Then, 
we used gffcompare [37] to determine the number of transcripts 
matching the annotation. Next, we used the merge function of StringTie 
that merges transcripts from all samples in a consistent set. Finally, using 
aligned files and merged transcripts previously identified, we quantified 
transcripts through the -e–B mode of StringTie. The table of transcripts 
counts was created with prepDE.py [40] a Python script provided by the 
StringTie documentation. The transcripts count matrix was loaded and 
analysed with DESeq2 package ([30], p. 2). Differential expression 
analysis was done contrasting each treatment condition with controls in 
each model, independently. Differentially expressed transcripts (DETs) 
were filtered with a p-adjust less than 0.05. Transcripts were annotated 
accordingly to StringTie annotation file. Coding potential of novel 
identified isoforms was predicted with the Coding-Potential Assessment 
Tool (CPAT [52]). 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ygeno.2021.07.028. 
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